First measurement of $F_{+}^{4\pi}$ in $D \rightarrow 4\pi$ decays & A new method for measuring CPV in charm decays

Sneha Malde University of Oxford

Supported by UK-India Education and Research Initiative
UK Science and Technology Facilities Council
L'oreal-Unesco For Women In Science

Outline

- Previous talk discussed how the knowledge of F_+ allowed use of $\pi\pi\pi^0$ and $KK\pi^0$ as quasi-GLW states for determining CKM angle γ
- Describe the measurement of F_+ for the decay $D \rightarrow 4\pi$, further increasing channels that can be sensitive to γ in this way
- Describe how these measurements are useful for CPV in charm decays

- Work based on
 - S. Malde et al arXiv:1504.05878 [hep-ex]
 - S. Malde, C. Thomas & G. Wilkinson arXiv: 1502.04560

$D \rightarrow 4\pi$

- Previous talk discussed the result for $D \rightarrow \pi \pi \pi^0$, $KK\pi^0$
- Another candidate is D \rightarrow 4 π
- Self conjugate decay mode, relatively high branching fraction ~0.7 %
- Fully pionic final state higher selection efficiency than other decay modes

CLEO-c and quantum coherence

- Hermitic detector based at CESR
 e⁺e⁻ collider
- Operated at threshold energy
- Study $\psi(3770) \rightarrow D^0 \overline{D^0}$ decays
- Key: C= -1 for $\psi(3770)$ at threshold
- Strong decay, C is conserved
- Hence the decays of D^0 and $\overline{D^0}$ are quantum correlated

i.e If one D meson decay is in a CP eigenstate the other D meson decays has opposite CP

Sneha Malde 19th May 2015

Strengths of the CLEO-c detector

- Very clean events
- S/B ~ 10- 100

- K_L reconstruction possible through missing mass technique
 - CP eigenstates with K_L and $K_L \pi \pi$ tags are possible

 Excellent E-M and hadron calorimetry and PID

Using CLEO-c data to measure F+

• Idea: Determine double tag yields where one D meson decays to 4π and the other to a CP eigenstate: $M(4\pi | CP_x)$

Fully reconstructed double tags only shown

Using CLEO-c data to measure F+

- Idea : Determine double tag yields where one D meson decays to 4π and the other to a CP eigenstate : M(4π | CP_x)
- For normalisation require knowledge of the single tag yield number of D→CP eigenstate decays in the dataset : S(CP_x)

$$\frac{M(4\pi | CP_X)}{S(CP_X)} = \frac{2N_{D\bar{D}}B(4\pi)B(CP_X)\varepsilon(4\pi | CP_X)[1-\eta_X(2F_+^{4\pi}-1)]}{2N_{D\bar{D}}B(CP_X)\varepsilon(CP_X)} = N^{-\eta_X}$$

Using CLEO-c data to measure F+

- Idea : Determine double tag yields where one D meson decays to 4π and the other to a CP eigenstate : M(4π | CP_x)
- For normalisation require knowledge of the single tag yield number of $D \rightarrow CP$ eigenstate decays in the dataset : $S(CP_x)$

$$\frac{M(4\pi \mid CP_X)}{S(CP_X)} = \frac{2N_{D\bar{D}}B(4\pi)B(CP_X)\varepsilon(4\pi \mid CP_X)[1-\eta_X(2F_+^{4\pi}-1)]}{2N_{D\bar{D}}B(CP_X)\varepsilon(CP_X)} = N^{-\eta_X}$$

 Ratio removes dependence on overall normalisation, and the CP tag branching fraction and efficiency (assume the efficiency factorises)

Sneha Malde 19th May 2015

Relation to $F_{+}^{4\pi}$

$$\frac{N^{+}}{N^{+} + N^{-}} = \frac{\mathbf{B}(4\pi)\varepsilon(4\pi)[1 - (2F_{+}^{4\pi} - 1)]}{\mathbf{B}(4\pi)\varepsilon(4\pi)[1 - (2F_{+}^{4\pi} - 1) + 1 + (2F_{+}^{4\pi} - 1)]}$$
$$\frac{N^{+}}{N^{+} + N^{-}} = F_{+}^{4\pi}$$

- Double ratio removes dependence on branching fraction and efficiency of the 4π decay
- Clean measurement few external constraints, minimises systematic uncertainties

Results of 4π vs CP odd tags

- Good consistency between tags
- Systematic uncertainties arise from single tag estimates, corrections for D mixing
- Sufficiently small to not be visible by eye

Results of 4π vs CP even tags

- Good consistency between tags
- Not possible to determine single tag yield for K₁ tags
- Effective single tag yield is estimated from BF, and N_{DD} and efficiencies.
- Large uncertainties on the BF and the efficiencies
- Impact of K_Iω tag minimal
- Similar uncertainties not present for $\pi\pi\pi^0$ KK π^0 since the yields were ~ 0

• $F_{+}^{4\pi} = 0.754 \pm 0.031 \pm 0.021$

Using other tags where the CP fraction is known

- Can extend the method to use other tags e.g $\pi\pi\pi^0$
- Require knowledge of the $\pi\pi\pi^0$ CP fraction

$$\frac{N^{\pi\pi\pi^{0}}}{N^{+}} = \frac{\left[1 - \left(2F_{+}^{4\pi} - 1\right)\left(2F_{+}^{\pi\pi\pi^{0}} - 1\right)\right]}{2F_{+}^{4\pi}}$$

$$F_{+}^{4\pi} = \frac{N^{+} F_{+}^{\pi\pi\pi^{0}}}{N^{\pi\pi\pi^{0}} - N^{+} + 2N^{+} F_{+}^{\pi\pi\pi^{0}}}$$

- Double tag yield 75.5±15.7
- $F_{+}^{4\pi} = 0.695 \pm 0.050 \pm 0.021$

Utilising K⁰ππ tags

• Further sensitivity can be gained by tagging 4π decays by particular regions of the $K^0\pi\pi$ Dalitz plot. For $K_S^0\pi\pi$:

$$M_{|i|} = h \left[K_i + K_{-i} - \left(2F_+ - 1 \right) 2c_i \sqrt{K_i K_{-i}} \right]$$

- Similar expression for $K_1^0 \pi \pi$
- |i| is some region on the $K^0\pi\pi$ Dalitz plot
- K_i is the fraction of the flavour tagged yield of the D^0 meson that falls into bin i
 - determined from BaBar model for $K_S\pi\pi$ and from CLEO data for $K_I\pi\pi$
- c_i is the average strong-phase difference over the region i
 - Measured at CLEO-c PRD 82 112006

Utilising K⁰ππ tags

• Integrated Data over the $K^0\pi\pi$ Dalitz plots

• Peaking bkg mainly $K_S^0\pi\pi$ misidentified as 4π on the signal side

• Peaking bkg mainly $K_S^0\pi\pi$ misidentified as $K_L^0\pi\pi$ on the tag side

Utilising K⁰ππ tags

Binning in which the K_i and c_i numbers are known.

Some plots

- Yields are corrected for background and varying efficiency
- Fit performed to the binned yields to determine F₊
- $F_{+}^{4\pi} = 0.737 \pm 0.049 \pm 0.024$

Combination

Tag	$F_+^{4\pi}$			
CP eigenstates	$0.754 \pm 0.031 \pm 0.021$			
$K_{ m S,L}^0\pi^+\pi^-$	$0.737 \pm 0.049 \pm 0.024$			
$\pi^{+}\pi^{-}\pi^{0}$	$0.695 \pm 0.050 \pm 0.021$			
Combined	0.737 ± 0.028			

- Value is quite high
- Good decay to add to the quasi-GLW measurements to add to the CKM angle γ measurements
- However there is another use too

The power of D decays

- In the Standard model indirect CP violation in charm decays is expected to be well below current level of precision than we can achieve
- Many models of New Physics predict enhancements
- Perfect place to search for New Physics effects.

- Current measurement consistent with no CPV
- Expanding the repertoire of measurements we can make is crucial to exploit all available data

A_{Γ} and y_{CP}

- A_{Γ} is one of the leading CP violating observables
- Measured from a difference in lifetimes of the decays of D⁰ and D⁰ to a CP eigenstate, e.g KK

$$A_{\Gamma} = \frac{\hat{\Gamma}(D^{0} \to KK) - \hat{\Gamma}(\bar{D}^{0} \to KK)}{\hat{\Gamma}(D^{0} \to KK) + \hat{\Gamma}(\bar{D}^{0} \to KK)}$$

$$y_{CP} = \frac{\hat{\Gamma}(D^{0} \to KK) + \hat{\Gamma}(\bar{D}^{0} \to KK)}{2\Gamma} - 1$$

$$|D_{1,2}\rangle = p |D^{0}\rangle \pm q |\bar{D}^{0}\rangle$$

$$|p|^{2} + |q^{2}| = 1, r_{CP} \equiv \frac{q}{p} e^{i\phi_{CP}}$$

$$A_{\Gamma} pprox rac{1}{2}y\cos\phi_{CP}\left(r_{CP} - rac{1}{r_{CP}}
ight) - rac{1}{2}x\sin\phi_{CP}\left(rac{1}{r_{CP}} + r_{CP}
ight),$$
 $y_{CP} pprox rac{1}{2}y\cos\phi_{CP}\left(rac{1}{r_{CP}} + r_{CP}
ight) - rac{1}{2}x\sin\phi_{CP}\left(r_{CP} - rac{1}{r_{CP}}
ight).$

Indirect CPV when $r_{CP} \neq 1$ and/or $\varphi_{CP} \neq 0$ x, y are the mixing parameters

Limiting factor

- Measurements rely on CP eigenstates
 -To date these have involved the following modes:
 KK, ππ, CP odd component of KsKK
- Other CP eigenstates include K_L or other particles with low reconstruction efficiencies
- BF of currently used modes are less 0.5%
- What if useful information can be gained from CP conjugate states rather than requiring a CP eigenstate?

Consider multibody decays

Following the derivation in arXiv: 1502.04560

$$egin{aligned} A_{\Gamma}^{ ext{eff}} &pprox rac{1}{2}(2F_{+}-1)y\cos\phi_{CP}\left(r_{CP}-rac{1}{r_{CP}}
ight) - \ &rac{1}{2}(2F_{+}-1)x\sin\phi_{CP}\left(r_{CP}+rac{1}{r_{CP}}
ight), \ y_{CP}^{ ext{eff}} &pprox rac{1}{2}(2F_{+}-1)y\cos\phi_{CP}\left(r_{CP}+rac{1}{r_{CP}}
ight) - \ &rac{1}{2}(2F_{+}-1)x\sin\phi_{CP}\left(r_{CP}-rac{1}{r_{CP}}
ight). \end{aligned}$$

- $A_{\Gamma}^{\text{eff}} = A_{\Gamma}/(2F_{+}-1)$
- If $F_+ = 0$ or 1 then the expressions reduce to A_Γ and y_{CP}
- If F₊ = 0.5, then there is no sensitivity to the parameters of interest
- Extensions including direct CPV can also be taken into account : see arXiv:1502.04560

Sneha Malde 19th May 2015

Prospects

- Derive relative sensitivity to KK mode for indirect CPV in D decays
- Use relative BF, and F₊ values
- Assume the selection efficiency is equal in all cases

	K^+K^-	$\pi^+\pi^-$	$\pi^{+}\pi^{-}\pi^{0}$	$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$
$BF \ [\times 10^{-2}]$	0.396	0.1402	1.43	0.742
F_{+}	1	1	0.973	0.737
Uncertainty	1	1.68	0.56	1.54

- $\pi\pi\pi^0$ is very powerful due to high F_+ and high BF -- Reconstruction efficiency should be high at BELLE-II
- 4π will provide valuable additional sensitivity, high reconstruction efficiency at LHCb

Summary and Conclusion

- High $F_{+}^{4\pi}$ value in $D \rightarrow 4\pi$
- Another mode to add to quasi-GLW for CKM angle γ measurements like $\pi\pi\pi^0$ and $KK\pi^0$
- All these D decay modes can also be used to improve D mixing and indirect CPV parameters by measuring A_{Γ}^{eff} and y_{CP}^{eff} .
- Interpretation of the potential measurements in terms of direct and indirect CPV also possible
- Look forward to the use of these modes to constrain r_{CP} and φ_{CP}